Dr. Madhukarrao Wasnik P.W.S. College Of Arts, Commerce \& Science, Nagpur

Subject : Chemistry
Class : B.Sc. 2 ${ }^{\text {nd }}$ Year Semester IV
Paper II : PHYSICAL CHEMISTRY

Unit I
TOPIC : Law of Crystallography

Crystallography

- It is a branch of science which deals with geometrical properties and structure of Crystal and crystalline substances.
- Crystalography is based on three fundamental laws. They are-

1. Law of constancy of interfacial angle
2. Law of rationality of indices
3. Law of symmetry

Law of constancy of interfacial angle

- These law was given by steno.
- "The crystals of same substance may have different shapes depending upon sires of faces but the angles between the corresponding faces remain constant ".
- It can be well understood from the diagrams as given below

Law of rationality of indices

- These law was given by Hauy.
- "All the phases of a crystal lattice cut the given Axis atom different positions which are the integral multiples of unit plane."

Consider a 3D coordinate system with $\mathrm{x}, \mathrm{y}, \& \mathrm{z}$ axes. A plane ABC is unit plane and KLM is any face parallel to ABC plane.
Let the distances are $\mathrm{d}(O A)=a \quad \mathrm{~d}(O B)=b \quad \mathrm{~d}(O C)=c$
According to law of rationality of indices the intercepts made by plane KLM can be expressed as-

$$
d(O L)=l a \quad d(O M)=m b \quad d(O K)=n c
$$

The ratios are given by-

$$
d(O P) / d(O A)=l \quad d(O M) / d(O B)=m \quad d(O K) / d(O C)=n
$$

Where, l, m, n are simple integral wholes numbers or fractions of whole numbers.

Law of symmetry

- "All the crystals of same substance possess same elements of symmetry".
- It can be well understood from the elements of symmetry
- Elements of Symmetry: The crystal has 3 types of elements of symmetry.

1. Plane of symmetry: It is defined as "An imaginary plane
 by which, if a crystal is divided into two parts one becomes the mirror image of each other".
In cubic crystal system, it have total 9 planes of symmetry as shown in diagram

Fig. Plane of symmetry in cube
2. Axis of symmetry: It is defined as, "An imaginary line through the Crystal about which is the Crystal is rotted through 360° it present the same appearance more than once during the course of complete rotation".

In cubic crystal system, it shows total $\mathbf{1 3}$ planes of symmetry as shown in figure.

Fig. Axis of symmetry in cube
3. Centre of symmetry: it is defined as "Centre or point of symmetry of a crystal is point within the Crystal such that any line drawn through it will intersect the surface of the Crystal at equal distance in both direction.

I. In cubic t system it has 1 center of symmetry.
II. Sum of all the number of a planes access and points of symmetry are called as element of symmetry.
III. For cubic crystal system the there are total 23 elements of symmetry.

Definition

- Space lattice: Regular arrangement of the constituent particles of a crystalline solid in three dimensional space is called as space lattice.
- Lattice point: Corresponding to each particle, there is a point in the space lattice which is called as lattice point.
- Unit cell: The smallest repeating unit in space lattice which when repeated over and over produces the complete space lattice is called as unit cell.

